简明现代魔法 -> 计算机算法 -> 非常强悍的堆排序

非常强悍的堆排序

2011-03-28

如何生成m个随机数?看了编程珠玑的文章,知道了一些,后来又在csdn上发现了其他人设计的,我就拿来说说吧。如果没有头绪,那就按平常来说就是随机生成一个数,然后比较集合中是否存在,不存在放里面,否则再继续生成。按珠玑上所言,那就是 psuedo :

select =m;
remaining =n;
for i=[0..n]
  if(bigrand()%remaining)<select
 set.add(i)
select--;
remaining--;

代码:

void getknuth(int m,int n)
{
	for (int i=0;i<n;i++)
 	if(bigrand()%(n-i))<m)
 	{
  		cout<<i<<endl;
  		m--;
  	}
}

另外一种方式是先从0到n生成按i递增生成n个数先,然后再随机打乱这m个数的位置并选中。

一次循环搞定:

for(int i=0;i<n;i++)
 	a[i]=i;
for(int j=0;i<m;j++)
{
  	swap(a[j],a[random()%j]);
}

还有一种与上述类似,就每个数据初始化为0,随机选中一个位置 如果该位置为零就没有赋值过,就赋值为i:

int a[100]={0};
int i, m;
for(i=1; i<=99; ++i)
{
        while(a[m=rand()%100]);
        a[m] = i;
}

该方法效率不高(因为很可能生成重复的位置),该章后面的原理部分很好:

  1. 正确理解你所遇到的问题
  2. 提炼抽象问题
  3. 考虑尽可能多的解法
  4. 实现一种解决方案

这些建言真的很不错,思考的时间和深度是和解决问题的力度成正比的。

好,说完题外话,回答我们另外一个排序方法:堆排序。

堆排序也是很好的排序方法之一,如快排平均效率很高,但是最坏情况下仍然逃脱不了O(n^2)级(当数据已经有序时),但是堆排序在最坏情况下仍然坚挺,保持O(n*log(n))的高度。那我们就来说说它吧。

堆排序首先要建立堆,堆是一种特殊的数据结构:x[i/2]<=x[i]的就算具有堆属性。

堆的操作有两个关键操作,siftup 和siftdown (向上筛选,向下筛选 分别对应插入一个数据,修改堆顶数据).注:这里的堆用数组表示。

void siftup(int n)
pre n>0 && heap(1,n-1)
post heap(1,n)
{
   	tmp=x[i];
	i=n;
	while(i>1)
	{
		if(x[i]>=x[i/2]) break;
 		x[i]=x[i/2];   //swap(x[i],x[i/2);
		i=i/2;
 	}
	x[i]=temp;
}
  
void siftdown(int n)
pre  heap(2,n) &&n>0;
post heap(1,n)
{
	i=1;
	c=2*i;
 	while(c<=n)
	{
		if(c+1<=n)
		{
			if(x[c]>x[c+1])
			c++;
		}
 
		if(x[c]>=x[i])break;
 		swap(x[c],x[i]);
		i=c;
		c=2*i;
	}
}

堆排序把数组看成两种抽象结构的结合:左边是堆,右边是已排序的元素序列。1...................i.....................n

首先建立堆:

for i=2..n//第一个已经是堆了
siftup(i)

然后建立有序序列:

for i=n;i>=2;
i--
 swap(1,i);
siftdown(i-1);

综合以上可以写下如下的简短排序方法:

for(int i=2;i<=n;i++)
	siftup(i);
for(int i=n;i>=2;i--)
{
 	swap(1,i);
	siftdown(i-1);
}

每次按降序提取元素,这样建立从右到左的有序序列。n-1 次siftup 和siftdown ,每个操作最多O(logn),故时间是 O(nlogn),很好很强大啊。

随机文章推荐
网站分类


注:如需转载本文,请注明出处(原文链接),谢谢。更多精彩内容,请进入简明现代魔法首页。

进入新博客
喜欢本文,就分享它吧
给我留言
您的名字:
您的邮件:
您的网站:


 

copyright © 2009 简明现代魔法    学习、分享、进步

power by Gonn 感谢所有关心和支持本站的朋友们