PHP内核探索:PHP哈希算法设计

PHP中的Hash算法
服务器君一共花费了608.499 ms进行了6次数据库查询,努力地为您提供了这个页面。
试试阅读模式?希望听取您的建议

Hash Table是PHP的核心,这话一点都不过分。PHP的数组、关联数组、对象属性、函数表、符号表等等都是用HashTable来做为容器的。

PHP的HashTable采用的拉链法来解决冲突,这个自不用多说,我今天主要关注的就是PHP的Hash算法,和这个算法本身透露出来的一些思想。

PHP的Hash采用的是目前最为普遍的DJBX33A (Daniel J. Bernstein, Times 33 with Addition),这个算法被广泛运用与多个软件项目,Apache、Perl和Berkeley DB等。对于字符串而言这是目前所知道的最好的哈希算法,原因在于该算法的速度非常快,而且分类非常好(冲突小,分布均匀)。

算法的核心思想就是:

hash(i) = hash(i-1) * 33 + str[i]

在zend_hash.h中,我们可以找到在PHP中的这个算法:

static inline ulong zend_inline_hash_func(char *arKey, uint nKeyLength)
{
    register ulong hash = 5381;
 
    /* variant with the hash unrolled eight times */
	for (; nKeyLength >= 8; nKeyLength -= 8) {
        hash = ((hash << 5) + hash) + *arKey++;
        hash = ((hash << 5) + hash) + *arKey++;
        hash = ((hash << 5) + hash) + *arKey++;
        hash = ((hash << 5) + hash) + *arKey++;
        hash = ((hash << 5) + hash) + *arKey++;
        hash = ((hash << 5) + hash) + *arKey++;
        hash = ((hash << 5) + hash) + *arKey++;
        hash = ((hash << 5) + hash) + *arKey++;
    }
    switch (nKeyLength) {
        case 7: hash = ((hash << 5) + hash) + *arKey++; /* fallthrough... */
        case 6: hash = ((hash << 5) + hash) + *arKey++; /* fallthrough... */
        case 5: hash = ((hash << 5) + hash) + *arKey++; /* fallthrough... */
        case 4: hash = ((hash << 5) + hash) + *arKey++; /* fallthrough... */
        case 3: hash = ((hash << 5) + hash) + *arKey++; /* fallthrough... */
        case 2: hash = ((hash << 5) + hash) + *arKey++; /* fallthrough... */
        case 1: hash = ((hash << 5) + hash) + *arKey++; break;
        case 0: break;
EMPTY_SWITCH_DEFAULT_CASE()
    }
    return hash;
}

相比在Apache和Perl中直接采用的经典Times 33算法:

  hashing function used in Perl 5.005:
  # Return the hashed value of a string: $hash = perlhash("key")
  # (Defined by the PERL_HASH macro in hv.h)
  sub perlhash
  {
      $hash = 0;
      foreach (split //, shift) {
          $hash = $hash*33 + ord($_);
      }
      return $hash;
  }

在PHP的hash算法中,我们可以看出很处细致的不同。首先,最不一样的就是,PHP中并没有使用直接乘33,而是采用了:

hash << 5 + hash

这样当然会比用乘快了。

然后,特别要主意的就是使用的unrolled,我前几天看过一篇文章讲Discuz的缓存机制,其中就有一条说是Discuz会根据帖子的热度不同采用不同的缓存策略,根据用户习惯,而只缓存帖子的第一页(因为很少有人会翻帖子)。

于此类似的思想,PHP鼓励8位一下的字符索引,他以8为单位使用unrolled来提高效率,这不得不说也是个很细节的,很细致的地方。

另外还有inline,register变量 … 可以看出PHP的开发者在hash的优化上也是煞费苦心。

最后就是,hash的初始值设置成了5381,相比在Apache中的times算法和Perl中的Hash算法(都采用初始hash为0),为什么选5381呢?具体的原因我也不知道,但是我发现了5381的一些特性:

Magic Constant 5381:
  1. odd number
  2. prime number
  3. deficient number
  4. 001/010/100/000/101 b

看了这些,我有理由相信这个初始值的选定能提供更好的分类。

至于说,为什么是Times 33而不是Times 其他数字,在PHP Hash算法的注释中也有一些说明,希望对有兴趣的同学有用:

  DJBX33A (Daniel J. Bernstein, Times 33 with Addition)
 
  This is Daniel J. Bernstein's popular `times 33' hash function as
  posted by him years ago on comp.lang.c. It basically uses a function
  like ``hash(i) = hash(i-1) * 33 + str[i]''. This is one of the best
  known hash functions for strings. Because it is both computed very
  fast and distributes very well.
 
  The magic of number 33, i.e. why it works better than many other
  constants, prime or not, has never been adequately explained by
  anyone. So I try an explanation: if one experimentally tests all
  multipliers between 1 and 256 (as RSE did now) one detects that even
  numbers are not useable at all. The remaining 128 odd numbers
  (except for the number 1) work more or less all equally well. They
  all distribute in an acceptable way and this way fill a hash table
  with an average percent of approx. 86%.
 
  If one compares the Chi^2 values of the variants, the number 33 not
  even has the best value. But the number 33 and a few other equally
  good numbers like 17, 31, 63, 127 and 129 have nevertheless a great
  advantage to the remaining numbers in the large set of possible
  multipliers: their multiply operation can be replaced by a faster
  operation based on just one shift plus either a single addition
  or subtraction operation. And because a hash function has to both
  distribute good _and_ has to be very fast to compute, those few
  numbers should be preferred and seems to be the reason why Daniel J.
  Bernstein also preferred it.
 
                   -- Ralf S. Engelschall <rse@engelschall.com>

延伸阅读

此文章所在专题列表如下:

  1. PHP内核探索:从SAPI接口开始
  2. PHP内核探索:一次请求的开始与结束
  3. PHP内核探索:一次请求生命周期
  4. PHP内核探索:单进程SAPI生命周期
  5. PHP内核探索:多进程/线程的SAPI生命周期
  6. PHP内核探索:Zend引擎
  7. PHP内核探索:再次探讨SAPI
  8. PHP内核探索:Apache模块介绍
  9. PHP内核探索:通过mod_php5支持PHP
  10. PHP内核探索:Apache运行与钩子函数
  11. PHP内核探索:嵌入式PHP
  12. PHP内核探索:PHP的FastCGI
  13. PHP内核探索:如何执行PHP脚本
  14. PHP内核探索:PHP脚本的执行细节
  15. PHP内核探索:操作码OpCode
  16. PHP内核探索:PHP里的opcode
  17. PHP内核探索:解释器的执行过程
  18. PHP内核探索:变量概述
  19. PHP内核探索:变量存储与类型
  20. PHP内核探索:PHP中的哈希表
  21. PHP内核探索:理解Zend里的哈希表
  22. PHP内核探索:PHP哈希算法设计
  23. PHP内核探索:翻译一篇HashTables文章
  24. PHP内核探索:哈希碰撞攻击是什么?
  25. PHP内核探索:常量的实现
  26. PHP内核探索:变量的存储
  27. PHP内核探索:变量的类型
  28. PHP内核探索:变量的值操作
  29. PHP内核探索:变量的创建
  30. PHP内核探索:预定义变量
  31. PHP内核探索:变量的检索
  32. PHP内核探索:变量的类型转换
  33. PHP内核探索:弱类型变量的实现
  34. PHP内核探索:静态变量的实现
  35. PHP内核探索:变量类型提示
  36. PHP内核探索:变量的生命周期
  37. PHP内核探索:变量赋值与销毁
  38. PHP内核探索:变量作用域
  39. PHP内核探索:诡异的变量名
  40. PHP内核探索:变量的value和type存储
  41. PHP内核探索:全局变量Global
  42. PHP内核探索:变量类型的转换
  43. PHP内核探索:内存管理开篇
  44. PHP内核探索:Zend内存管理器
  45. PHP内核探索:PHP的内存管理
  46. PHP内核探索:内存的申请与销毁
  47. PHP内核探索:引用计数与写时复制
  48. PHP内核探索:PHP5.3的垃圾回收机制
  49. PHP内核探索:内存管理中的cache
  50. PHP内核探索:写时复制COW机制
  51. PHP内核探索:数组与链表
  52. PHP内核探索:使用哈希表API
  53. PHP内核探索:数组操作
  54. PHP内核探索:数组源码分析
  55. PHP内核探索:函数的分类
  56. PHP内核探索:函数的内部结构
  57. PHP内核探索:函数结构转换
  58. PHP内核探索:定义函数的过程
  59. PHP内核探索:函数的参数
  60. PHP内核探索:zend_parse_parameters函数
  61. PHP内核探索:函数返回值
  62. PHP内核探索:形参return value
  63. PHP内核探索:函数调用与执行
  64. PHP内核探索:引用与函数执行
  65. PHP内核探索:匿名函数及闭包
  66. PHP内核探索:面向对象开篇
  67. PHP内核探索:类的结构和实现
  68. PHP内核探索:类的成员变量
  69. PHP内核探索:类的成员方法
  70. PHP内核探索:类的原型zend_class_entry
  71. PHP内核探索:类的定义
  72. PHP内核探索:访问控制
  73. PHP内核探索:继承,多态与抽象类
  74. PHP内核探索:魔术函数与延迟绑定
  75. PHP内核探索:保留类与特殊类
  76. PHP内核探索:对象
  77. PHP内核探索:创建对象实例
  78. PHP内核探索:对象属性读写
  79. PHP内核探索:命名空间
  80. PHP内核探索:定义接口
  81. PHP内核探索:继承与实现接口
  82. PHP内核探索:资源resource类型
  83. PHP内核探索:Zend虚拟机
  84. PHP内核探索:虚拟机的词法解析
  85. PHP内核探索:虚拟机的语法分析
  86. PHP内核探索:中间代码opcode的执行
  87. PHP内核探索:代码的加密与解密
  88. PHP内核探索:zend_execute的具体执行过程
  89. PHP内核探索:变量的引用与计数规则
  90. PHP内核探索:新垃圾回收机制说明

本文地址:http://www.nowamagic.net/librarys/veda/detail/1349,欢迎访问原出处。

不打个分吗?

转载随意,但请带上本文地址:

http://www.nowamagic.net/librarys/veda/detail/1349

如果你认为这篇文章值得更多人阅读,欢迎使用下面的分享功能。
小提示:您可以按快捷键 Ctrl + D,或点此 加入收藏

阅读一百本计算机著作吧,少年

很多人觉得自己技术进步很慢,学习效率低,我觉得一个重要原因是看的书少了。多少是多呢?起码得看3、4、5、6米吧。给个具体的数量,那就100本书吧。很多人知识结构不好而且不系统,因为在特定领域有一个足够量的知识量+足够良好的知识结构,系统化以后就足以应对大量未曾遇到过的问题。

奉劝自学者:构建特定领域的知识结构体系的路径中再也没有比学习该专业的专业课程更好的了。如果我的知识结构体系足以囊括面试官的大部分甚至吞并他的知识结构体系的话,读到他言语中的一个词我们就已经知道他要表达什么,我们可以让他坐“上位”毕竟他是面试官,但是在知识结构体系以及心理上我们就居高临下。

所以,阅读一百本计算机著作吧,少年!

《UNIX编程艺术》 姜宏 (作者)

《UNIX编程艺术》主要介绍了Unix系统领域中的设计和开发哲学、思想文化体系、原则与经验,由公认的Unix编程大师、开源运动领袖人物之一Eric S. Raymond倾力多年写作而成。包括Unix设计者在内的多位领域专家也为本书贡献了宝贵的内容。《UNIX编程艺术》内容涉及社群文化、软件开发设计与实现,覆盖面广、内容深邃,完全展现了作者极其深厚的经验积累和领域智慧。

更多计算机宝库...