带头结点与不带头结点的单链表初始化

带头结点与不带头结点
服务器君一共花费了219.332 ms进行了5次数据库查询,努力地为您提供了这个页面。
试试阅读模式?希望听取您的建议

带头结点初始化

Node *head;  //声明头结点

void InitList(Node **head){
	*head=(Node *)malloc( sizeof(Node));
	(*head)->next=NULL;
}

带头结点尾插入,统一操作。

方式一:

void CreatList(Node **head){
     Node *r=*head,*s;
     int a;
     while(scanf("%d",&a)){
          if(a!=0){
               s=(Node *)malloc(sizeof(Node));
               s->value=a;
               r->next=s;
               r=s;    
          }
          else{    
               r->next=NULL;
               break;    
          }
     }
}

调用CreatList(&head);

方式二:

void CreatList(Node *head){
     Node *r=head,*s;
     ... //下面的都一样
}

调用CreatList(head);

不带头结点初始化

方式一:

void InitList(Node **head){
	*head=NULL;
}

调用InitList(&head);

方式二:

void InitList(Node *head){
	head=NULL;
}

调用InitList(head);

不带头结点尾插入,第一个节点与其他节点分开操作。

void CreatList(Node  **head){
     Node *p,*t;         /*p工作指针,t临时指针*/
     int a,i=1;
     while(scanf("%d",&a)){
          if(a!=0){
               t=(Node *)malloc(sizeof(Node));
               t->value=a;
               if(i==1){
                    *head=t;    
               }
               else{
                    p->next=t;
               }
               p=t;
          }
          else{    
               p->next=NULL;
               break;    
          }
          i++;
     }
}

调用CreatList(&head);

两种初始化方法的区别

  1. 不带头结点的单链表对于第一个节点的操作与其他节点不一样,需要特殊处理,这增加了程序的复杂性和出现bug的机会,因此,通常在单链表的开始结点之前附设一个头结点。
  2. 带头结点的单链表,初始时一定返回的是指向头结点的地址,所以一定要用二维指针,否则将导致内存访问失败或异常。
  3. 带头结点与不带头结点初始化、插入、删除、输出操作都不样,在遍历输出链表数据时,带头结点的判断条件是while(head->next!=NULL),而不带头结点是while(head!=NULL),虽然头指针可以在初始时设定,但是如1所述,对于特殊情况如只有一个节点会出现问题。

为什么不带头结点初始化有2种方式,而带头结点只有1种方式呢?

因为不带头结点声明Node *head 时,C编译器将其自动初始化为NULL,于是根本不需要调用InitList(head); 也即不带头结点的初始化是个伪操作。而带头结点的初始化在堆开辟了一段内存,需要修改head指针变量指向的地址(即head的值),所以要修改head的值,必须传保存head变量的地址(即二维指针)。而直接调用CreatList(head);相当于传head变量的值,函数修改的是head的副本,无法真正改变head的值。 

注:这里可以将head指针看成一个变量(不管它保存的是地址),就比较好理解了。

这其实本质上还是传值,传址的问题,只不过指针本身保存的地址,让这个过程变得有点纠结。在函数调用需要修改指针变量的指向(value)时,应该传递指针变量的地址(address)。

另外,对于函数的形参是指针时,只要该参数不在左边(即都是右值操作),二维指针(形参)就可以简化为一维指针。如上面带头结点的尾插简化版本。

本文地址:http://www.nowamagic.net/librarys/veda/detail/1806,欢迎访问原出处。

不打个分吗?

转载随意,但请带上本文地址:

http://www.nowamagic.net/librarys/veda/detail/1806

如果你认为这篇文章值得更多人阅读,欢迎使用下面的分享功能。
小提示:您可以按快捷键 Ctrl + D,或点此 加入收藏

大家都在看

阅读一百本计算机著作吧,少年

很多人觉得自己技术进步很慢,学习效率低,我觉得一个重要原因是看的书少了。多少是多呢?起码得看3、4、5、6米吧。给个具体的数量,那就100本书吧。很多人知识结构不好而且不系统,因为在特定领域有一个足够量的知识量+足够良好的知识结构,系统化以后就足以应对大量未曾遇到过的问题。

奉劝自学者:构建特定领域的知识结构体系的路径中再也没有比学习该专业的专业课程更好的了。如果我的知识结构体系足以囊括面试官的大部分甚至吞并他的知识结构体系的话,读到他言语中的一个词我们就已经知道他要表达什么,我们可以让他坐“上位”毕竟他是面试官,但是在知识结构体系以及心理上我们就居高临下。

所以,阅读一百本计算机著作吧,少年!

《浪潮之巅》 吴军 (作者)

近一百多年来,总有一些公司很幸运地、有意识或无意识地站在技术革命的浪尖之上。在长达十年甚至几十年的时间里,它们代表着科技的浪潮,直到下一波浪潮的来临。从19世纪末算起,AT&T公司、IBM公司、苹果公司、英特尔公司、微软公司、思科公司、雅虎公司和Google公司都先后被幸运地推到了浪尖。虽然,它们来自不同的领域,中间有些已经衰落或正在衰落,但是它们都极度辉煌过。吴军的这本《浪潮之巅》系统地介绍了这些公司成功的本质原因及科技工业一百多年的发展。在这些公司兴衰的背后,有着它必然的规律。《浪潮之巅》不仅讲述科技工业的历史,更重在揭示它的规律性。

更多计算机宝库...