单链表的插入与遍历操作

详细讲解单链表的插入过程
服务器君一共花费了224.258 ms进行了5次数据库查询,努力地为您提供了这个页面。
试试阅读模式?希望听取您的建议

昨天我们说了,单链表如何进行初始化操作。初始化之后,我们就创建了一个单链表了,接下来,我们要往这个链表里填充数据,也就是常说的,插入操作。

  • 假设存储元素e的结点为s,要实现结点p、p->next和s之间逻辑关系的变化,只需将结点s插入到结点p和p->next之间即可。可如何插入呢?
  • 插入操作正是链表的优势操作之一。根本用不着惊动其他结点,只需要让s->next和p->next的指针做一点改变即可。你看一下这幅图你就明白了。

先把结点s的指针next指向ai+1,即 s->next = p->next. 然后再把ai的指针next指向s,即 p->next = s. 用代码描述则为:

s->next = p->next;
p->next = s;
  • 也就是说让p的后继结点变成s的后继结点,而不再是p的后继,相当于砍断了p与其后继结点的关联。然后再把结点s变成 p的后继结点,s也就变成了 p->next。那么这两句的顺序可不可以交换一下呢?

如果先p->next=s;再s->next=p->next;会怎么样?此时第一句会使得将p->next给覆盖成s的地址了。那么s->next=p->next,其实就等于s->next=s,这样真正的拥有ai+1数据元素的结点就没了上级。这样的插入操作就是失败的,造成了临场掉链子的尴尬局面。所以这两句是无论如何不能反的,这点初学者一定要注意。

单链表第i个数据插入结点的算法思路:

  1. 声明一结点p指向链表第一个结点,初始化j从1开始;
  2. 当j < i时,就遍历链表,让p的指针向后移动,不断指向下一结点,j累加1;
  3. 若到链表末尾p为空,则说明第i个元素不存在;
  4. 否则査找成功,在系统中生成一个空结点s;
  5. 将数据元素e賦值给s->data;
  6. 单链表的插入标准语句s->next=p->next; p->next=s;
  7. 返回成功。

函数设计如下:

/* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L), */
/* 操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1 */
Status ListInsert(LinkList *L,int i,ElemType e)
{
	int j;
	LinkList p,s;
	p = *L;     /* 声明一个结点 p,指向头结点 */
	j = 1;
	while (p && j < i)     /* 寻找第i个结点 */
	{
		p = p->next;
		++j;
	}
	if (!p || j > i)
		return ERROR;   /* 第i个元素不存在 */
	s = (LinkList)malloc(sizeof(Node));  /*  生成新结点(C语言标准函数) */
	s->data = e;
	s->next = p->next;      /* 将p的后继结点赋值给s的后继  */
	p->next = s;          /* 将s赋值给p的后继 */
	return OK;
}

附:完整的程序。

#include "stdio.h"

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0

#define MAXSIZE 20 /* 存储空间初始分配量 */

typedef int Status;/* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef int ElemType;/* ElemType类型根据实际情况而定,这里假设为int */

typedef struct Node
{
    ElemType data;
    struct Node *next;
}Node;
/* 定义LinkList */
typedef struct Node *LinkList;

/* 初始化顺序线性表 */
Status InitList(LinkList *L)
{
    *L=(LinkList)malloc(sizeof(Node)); /* 产生头结点,并使L指向此头结点 */
    if(!(*L)) /* 存储分配失败 */
    {
        return ERROR;
    }
    (*L)->next=NULL; /* 指针域为空 */

    return OK;
}

/* 初始条件:顺序线性表L已存在。操作结果:返回L中数据元素个数 */
int ListLength(LinkList L)
{
    int i=0;
    LinkList p=L->next; /* p指向第一个结点 */
    while(p)
    {
        i++;
        p=p->next;
    }
    return i;
}

/* 初始条件:顺序线性表L已存在 */
/* 操作结果:依次对L的每个数据元素输出 */
Status ListTraverse(LinkList L)
{
    LinkList p=L->next;
    while(p)
    {
        visit(p->data);
        p=p->next;
    }
    printf("\n");
    return OK;
}

Status visit(ElemType c)
{
    printf("-> %d ",c);
    return OK;
}

/* 初始条件:顺序线性表L已存在,1≤i≤ListLength(L), */
/* 操作结果:在L中第i个位置之前插入新的数据元素e,L的长度加1 */
Status ListInsert(LinkList *L,int i,ElemType e)
{
	int j;
	LinkList p,s;
	p = *L;     /* 声明一个结点 p,指向头结点 */
	j = 1;
	while (p && j < i)     /* 寻找第i个结点 */
	{
		p = p->next;
		++j;
	}
	if (!p || j > i)
		return ERROR;   /* 第i个元素不存在 */
	s = (LinkList)malloc(sizeof(Node));  /*  生成新结点(C语言标准函数) */
	s->data = e;
	s->next = p->next;      /* 将p的后继结点赋值给s的后继  */
	p->next = s;          /* 将s赋值给p的后继 */
	return OK;
}

int main()
{
    LinkList L;
    Status i;
    int j,k;
    char opp;

    i=InitList(&L);
    printf("链表L初始化完毕,ListLength(L)=%d\n",ListLength(L));

    printf("\n1.遍历操作 \n2.插入操作  \n0.退出 \n请选择你的操作:\n");
    while(opp != '0'){
        scanf("%c",&opp);
        switch(opp){
            case '1':
                ListTraverse(L);
                printf("\n");
                break;

            case '2':
                srand((unsigned)time(NULL));
                for(j=1;j<=10;j++)
                {
                    i=ListInsert(&L,1,rand()%100);
                }
                printf("在L的表头依次插入10个随机数后:");
                ListTraverse(L);
                printf("\n");
                break;

            case '0':
                exit(0);
        }
    }

}

延伸阅读

此文章所在专题列表如下:

  1. 第01话:线性表的概念与定义
  2. 第02话:线性表的抽象数据类型ADT定义
  3. 第03话:线性表的顺序存储结构
  4. 第04话:线性表的初始化
  5. 第05话:线性表的遍历、插入操作
  6. 第06话:判断线性表是否为空与置空操作
  7. 第07话:线性表的查找操作
  8. 第08话:线性表删除某个元素
  9. 线性表顺序存储的优缺点
  10. 线性表链式存储结构的由来与基本概念
  11. 单链表的头指针、头结点与首元结点
  12. 单链表的结构体定义与声明
  13. 单链表的初始化
  14. 单链表的插入与遍历操作
  15. 单链表的删除某个元素的操作
  16. 获取单链表中的指定位置的元素
  17. 查找某数在单链表中的位置
  18. 用头插法实现单链表整表创建
  19. 用尾插法实现单链表整表创建
  20. 将单链表重置为空表
  21. 单链表反转/逆序的两种方法
  22. 单链表反转/逆序的第三种方法
  23. 求单链表倒数第N个数
  24. 用标尺法快速找到单链表的中间结点
  25. 如何判断链表是否有环的存在
  26. 单链表建环,无环链表变有环
  27. 删除单链表中的重复元素

本文地址:http://www.nowamagic.net/librarys/veda/detail/2223,欢迎访问原出处。

不打个分吗?

转载随意,但请带上本文地址:

http://www.nowamagic.net/librarys/veda/detail/2223

如果你认为这篇文章值得更多人阅读,欢迎使用下面的分享功能。
小提示:您可以按快捷键 Ctrl + D,或点此 加入收藏

大家都在看

阅读一百本计算机著作吧,少年

很多人觉得自己技术进步很慢,学习效率低,我觉得一个重要原因是看的书少了。多少是多呢?起码得看3、4、5、6米吧。给个具体的数量,那就100本书吧。很多人知识结构不好而且不系统,因为在特定领域有一个足够量的知识量+足够良好的知识结构,系统化以后就足以应对大量未曾遇到过的问题。

奉劝自学者:构建特定领域的知识结构体系的路径中再也没有比学习该专业的专业课程更好的了。如果我的知识结构体系足以囊括面试官的大部分甚至吞并他的知识结构体系的话,读到他言语中的一个词我们就已经知道他要表达什么,我们可以让他坐“上位”毕竟他是面试官,但是在知识结构体系以及心理上我们就居高临下。

所以,阅读一百本计算机著作吧,少年!

《代码大全(第2版)》 史蒂夫•迈克康奈尔 (Steve McConnell) (作者), 金戈 (译者)

代码大全(第2版)是著名IT畅销书作者、《IEEE Software》杂志前主编、具有20年编程与项目管理经验的Steve McConnell十余年前的经典著作的全新演绎:第2版做了全面的更新,增加了很多与时俱进的内容,包括对新语言、新的开发过程与方法论的讨论等等。这是一本百科全书式的软件构建手册,涵盖了软件构建活动的方方面面,尤其强调提高软件质量的种种实践方法。

更多计算机宝库...