信息的基础:元数据(Metadata)

详解元数据
服务器君一共花费了217.217 ms进行了5次数据库查询,努力地为您提供了这个页面。
试试阅读模式?希望听取您的建议

元数据(Meta Date),关于数据的数据或者叫做用来描述数据的数据或者叫做信息的信息。

这些定义都很是抽象,我们可以把元数据简单的理解成,最小的数据单位。元数据可以为数据说明其元素或属性(名称、大小、数据类型、等),或其结构(长度、字段、数据列),或其相关数据(位于何处、如何联系、拥有者)。

举几个简单的例子:

使用过数码相机的同学都应该知道,每张数码照片都会存在一个EXIF信息。它就是一种用来描述数码图片的元数据。根据EXIF标准,这些元数据包括:Image Description(图像描述、来源. 指生成图像的工具 )、Artist(作者)、Make( 生产者)、Model (型号)、….、等等。

生活中我们填写的《个人信息登记表》,包括姓名、性别、民族、政治面貌、一寸照片、学历、职称等等这些就是锁定某个人的元数据。

通常情况下元数据可以分为以下三类:固有性元数据、管理性元数据、描述性元数据

  • 固有性元数据;与事物构成有关的元数据。
  • 管理性元数据;与事物处理方式有关的元数据。
  • 描述性元数据;与事物本质有关的元数据。

当然,并不是说所数据总能清晰的划分在以上3类中。比如:一张由kent拍摄的大小为20K的JPG格式的印着一只小狗的圣诞卡照片。

它的固有性元数据包括:20K、JPG;管理性元数据:kent拍摄、圣诞卡;描述性元数据:狗、小狗、圣诞、照片、圣诞节、…

但是,圣诞卡则可以放在以上任何一个分类中。与事物构成有关(说明这个东东是什么)、与事物处理方式有关(说明这个东东的用途是什么)、与事物本质有关(可以直接用来描述这个东东)。

元数据之于信息架构的意义

元数据是一种很有效的方法,用以确保网站上各种形式的内容确实都能被查找到。比如我们常常为搜索很久之前看到的一张美女图片犯愁,而如果一个图片网站如果信息架构足够好,我们就能凭借我们回忆到的元数据(关于武藤兰的?2000年拍摄的?)清晰的找到。

元数据之于信息架构就像是房子的砖瓦,它可以根据需要摆放成不同的信息检索系统。元数据是所有组织系统的基础,从搜索到电子商务网站上的导航系统都强烈的依赖于元数据。

前面提到,元数据实际上是为产品的可查找性(Findability)服务的。而用户在查找信息的时候不会按照机器思维去找(不会输入该照片的ID),而是直接输入关于信息的描述性信息如:“小狗 圣诞卡”。也就意味着在创建关于描述性元数据的时候要尽量的提取出任官关于这个对象所讲述的故事,这些才是人们能记住的和习惯搜索的细节。

我们会发现,机械生成的元数据常常是不靠谱的,如在UCH系统下发布日志的时候系统会自动根据标题进行机械分析生成的一些元数据。

而充分利用手工元数据(handcrafted metadate)是提高可查找性的一个好方法。最常见的例子就是我们见到的Tag。Tag就是一种用户自创的元数据,其特点是无层次结构、自定义。

本文地址:http://www.nowamagic.net/librarys/veda/detail/2297,欢迎访问原出处。

不打个分吗?

转载随意,但请带上本文地址:

http://www.nowamagic.net/librarys/veda/detail/2297

如果你认为这篇文章值得更多人阅读,欢迎使用下面的分享功能。
小提示:您可以按快捷键 Ctrl + D,或点此 加入收藏

大家都在看

阅读一百本计算机著作吧,少年

很多人觉得自己技术进步很慢,学习效率低,我觉得一个重要原因是看的书少了。多少是多呢?起码得看3、4、5、6米吧。给个具体的数量,那就100本书吧。很多人知识结构不好而且不系统,因为在特定领域有一个足够量的知识量+足够良好的知识结构,系统化以后就足以应对大量未曾遇到过的问题。

奉劝自学者:构建特定领域的知识结构体系的路径中再也没有比学习该专业的专业课程更好的了。如果我的知识结构体系足以囊括面试官的大部分甚至吞并他的知识结构体系的话,读到他言语中的一个词我们就已经知道他要表达什么,我们可以让他坐“上位”毕竟他是面试官,但是在知识结构体系以及心理上我们就居高临下。

所以,阅读一百本计算机著作吧,少年!

《大话数据结构》 程杰 (作者)

《大话数据结构》主要内容包含:数据结构介绍、算法推导大O阶的方法;顺序结构与链式结构差异、栈与队列的应用;串的朴素模式匹配、KMP模式匹配算法;二叉树前中后序遍历、赫夫曼树及应用;图的深度、广度遍历;最小生成树两种算法、最短路径两种算法;拓扑排序与关键路径算法;折半查找、插值查找、斐波那契查找等静态查找;稠密索引、分块索引、倒排索引等索引技术;二叉排序树、平衡二叉树等动态查找;B树、B+树技术,散列表技术;冒泡、选择、插入等简单排序;希尔、堆、归并、快速等改进排序。

更多计算机宝库...