分析用户行为给用户准确内容推荐

用户行为分析
服务器君一共花费了220.772 ms进行了4次数据库查询,努力地为您提供了这个页面。
试试阅读模式?希望听取您的建议

今天有人问我会不会推荐算法,回到家里反复思考了下(其实就是一个会与不会的回答,为啥我还要反复思量下了?),我发现自己从事软件开发工作这么多年,大小项目无数,但是如果从做应用角度换句话说我做了哪些提高人们工作效率或者改变了哪些人的生活方式的东西呢?项目做的再多,技术再精通也就是一个单兵实力很强的士兵,没有一个层次的提升最终都是一个兵,技术是手段是工具,我用对了地方才能发挥重大的价值,这个地方到底在哪里对现在我而言是一个不得不思考的问题,因为我现在太想提升自己的能力了。这个所谓的地方就是我们所说的业务,我必须要找到一个业务方向精深下去了,而今天所说的推荐算法就是一个很好的引子。

推荐对于互联网公司太重要了,互联网是这个世界里最讲究平等、开放的东西,在互联网里的无拘无束引来了那么多精英投身于他,所以最终再他那不到十几年的时间才会那么深刻的改变人类的生活方式,但是做出不朽网站的却往往是利益至上的商人,而平等与开放又让他很难直接对用户伸手要钱,所以互联网公司的盈利方式都是那么的简单和单一,更多还是股市上投资人对它们未来坚定不移的信任。不过互联网是聚集人群的地方,那么多人总会有办法引导它们去消费,那么能清晰的分析出这么多用户的行为特征,了解自己用户的价值取向一定会将商人的公司引向源源不断的财富,而推荐的技术就是为了解决这些问题的。

我做过互联网公司的用户行为分析系统,这其实就是在做推荐,它就是推荐的源头,所以我可以说自己做过推荐算法,但是我只是在实现推荐功能的软件,之后通过我对系统的了解反过来为产品经理提供良好的建议。

用户行为分析这个业务方向很好,绝对是一个有旺盛生命力的方向,我现在手头有一些关于用户行为分析的资料,也很清楚我所在公司的用户行为分析的系统架构设计,我很有必要总结下这里面的知识,让自己的经验延伸到一个解决业务问题的能力,所以今天起我将开启“用户行为分析笔记”,希望能在博客园里以文会友,有更多志同道合的人加入到我学习和研究的这个过程里来。

由于这个系列是今天的灵光一线,所以还没有认真思量这个系列知识的层次和结构,凭借我以前项目的经验我在概述里首先提及两个很重要的概念PV和UV。

PV(page view)即页面浏览量,或点击量,通常是衡量一个网络新闻频道或网站甚至一条网络新闻的主要指标。

高手对pv的解释是,一个访问者在24小时(0点到24点)内到底看了你网站几个页面。需要注意的是:同一个人浏览你网站同一个页面,不重复计算pv量。pv就是一个访问者打开了你网站的几个页面。PV是投资者衡量商业网站表现的最重要尺度。

pv的计算:当一个访问者访问的时候,记录他所访问的页面和对应的IP,然后确定这个IP今天访问了这个页面没有。如果你的网站到了23点,单纯IP有60万条的话,每个访问者平均访问了3个页面,那么pv表的记录就要有180万条。

PV很粗犷,可以说很容易作假,但是这也就是互联网公司忽悠风头的重要指标。

UV(独立访客):即Unique Visitor,访问您网站的一台电脑客户端为一个访客。00:00-24:00内相同的客户端只被计算一次。我们系统里客户端唯一标示是基于我们网站写在客户端的cookies的ID。

我们所做的用户行为分析80%以上的功能都是基于这两个指标来进行的。用户行为分析系统的目的是增强网站访客想法的能力。

在我手头有一份我们项目资料,里面写道我们所做的用户行为分析系统的设计是基于那些要点进行的,我将这些要点列举如下:

分析的要点如下:

  1. 点击密度分析
  2. 点击密度就是指一个页面各个功能点被点击次数的分布情况,这个是从用户行为的角度解释,它的作用就是通过采集页面各个功能点点击次数,让我们知道用户对那些东西感兴趣,反过来,我们加入页面的功能点用户喜欢点击吗?如果点击次数没有达到预期,我们施加什么样的影响,他们才会觉得有趣,有意思。

  3. 访客的目的
  4. 这个要点非常宽泛,其实最准确的方案就是让客服不断给用户打骚扰电话,直接问个明白。但是我们可以通过采集的数据间接的分析访客的目的,在我们系统里主要是通过收集用户访问网站的渠道,比如是通过搜索网站还是导航网站,或者是直接打地址来访问,其次就是通过分析一个页面的上游页面和下游页面来推测用户的行为的目的。

  5. 任务的完成率
  6. 任务的完成率是什么呢?例如我们第一次使用淘宝网站,首先要注册淘宝用户信息,想买东西还要注册支付宝账户,这个过程不是那么轻松自如的,有些用户在进行这个过程时候碰到一些不清楚的问题可能就会放弃导致用户的流失。任务的完成率就是指完成某个特定任务的用户比率,它可以衡量出我们设计的系统的用户体验性的好与坏,在我们的系统里我们还有一个页面转化率的指标,比如完成某某注册过程需要5个页面,而在那个页面的跳出率最高,这样就可以分析出我们功能模块设计的不合理的地方在哪里了。

  7. 细分的访客趋势
  8. 这是更深层次的用户行为分析了,首先对用户进行分类,然后将不同类的用户做细化的分析,这个功能在我们用户行为分析系统里体现较少,主要集中在两块:一个是按地域分类用户,一个是按会员和非会员分类,其他细分的访客趋势都是我们为数据分析和挖掘部门提供数据,他们建立数据模型,在数据库里面计算后生成报表。

  9. 多渠道影响分析
  10. 这个也是更深层次的分析了,这个功能大部分还是数据分析和挖掘部门通过实际业务建模生成报表,我们系统主要是网站的访问渠道以及搜索关键字来进行的。

本文地址:http://www.nowamagic.net/librarys/veda/detail/247,欢迎访问原出处。

不打个分吗?

转载随意,但请带上本文地址:

http://www.nowamagic.net/librarys/veda/detail/247

如果你认为这篇文章值得更多人阅读,欢迎使用下面的分享功能。
小提示:您可以按快捷键 Ctrl + D,或点此 加入收藏

大家都在看

阅读一百本计算机著作吧,少年

很多人觉得自己技术进步很慢,学习效率低,我觉得一个重要原因是看的书少了。多少是多呢?起码得看3、4、5、6米吧。给个具体的数量,那就100本书吧。很多人知识结构不好而且不系统,因为在特定领域有一个足够量的知识量+足够良好的知识结构,系统化以后就足以应对大量未曾遇到过的问题。

奉劝自学者:构建特定领域的知识结构体系的路径中再也没有比学习该专业的专业课程更好的了。如果我的知识结构体系足以囊括面试官的大部分甚至吞并他的知识结构体系的话,读到他言语中的一个词我们就已经知道他要表达什么,我们可以让他坐“上位”毕竟他是面试官,但是在知识结构体系以及心理上我们就居高临下。

所以,阅读一百本计算机著作吧,少年!

《算法导论(原书第2版)》 科曼(Cormen T.H.) (作者), 等 (作者, 译者), 潘金贵 (译者)

《算法导论(原书第2版)》一书深入浅出,全面地介绍了计算机算法。对每一个算法的分析既易于理解又十分有趣,并保持了数学严谨性。本书的设计目标全面,适用于多种用途。涵盖的内容有:算法在计算中的作用,概率分析和随机算法的介绍。本书专门讨论了线性规划,介绍了动态规划的两个应用,随机化和线性规划技术的近似算法等,还有有关递归求解、快速排序中用到的划分方法与期望线性时间顺序统计算法,以及对贪心算法元素的讨论。本书还介绍了对强连通子图算法正确性的证明,对哈密顿回路和子集求和问题的NP完全性的证明等内容。全书提供了900多个练习题和思考题以及叙述较为详细的实例研究。

更多计算机宝库...