丑数Ugly Number查找算法

只包含因子2、3和5的数称作丑数
服务器君一共花费了149.987 ms进行了4次数据库查询,努力地为您提供了这个页面。
试试阅读模式?希望听取您的建议

我们把只包含因子2、3和5的数称作丑数(Ugly Number)。例如6、8都是丑数,但14不是,因为它包含因子7。习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第1500个丑数

下面是一道在网络上广为流传的面试题,据说google曾经采用过这道题。

所谓一个数m是另一个数n的因子,是指n能被m整除,也就是n % m == 0。根据丑数的定义,丑数只能被2、3和5整除。也就是说如果一个数如果它能被2整除,我们把它连续除以2;如果能被3整除,就连续除以3;如果能被5整除,就除以连续5。如果最后我们得到的是1,那么这个数就是丑数,否则不是。

基于前面的分析,我们可以写出如下的函数来判断一个数是不是丑数:

bool IsUgly(int number)
{
    while(number % 2 == 0)
        number /= 2;
    while(number % 3 == 0)
        number /= 3;
    while(number % 5 == 0)
        number /= 5;
    return (number == 1) ? true : false;
}

接下来,我们只需要按顺序判断每一个整数是不是丑数,即:

int GetUglyNumber_Solution1(int index)
{
    if(index <= 0)
        return 0;
    int number = 0;
    int uglyFound = 0;
    while(uglyFound < index)
    {
        ++number;
        if(IsUgly(number))
        {
            ++uglyFound;
        }
    }
    return number;
}

我们只需要在函数GetUglyNumber_Solution1中传入参数1500,就能得到第1500个丑数。该算法非常直观,代码也非常简洁,但最大的问题我们每个整数都需要计算。即使一个数字不是丑数,我们还是需要对它做求余数和除法操作。因此该算法的时间效率不是很高。

接下来我们换一种思路来分析这个问题,试图只计算丑数,而不在非丑数的整数上花费时间。根据丑数的定义,丑数应该是另一个丑数乘以2、3或者5的结果(1除外)。因此我们可以创建一个数组,里面的数字是排好序的丑数。里面的每一个丑数是前面的丑数乘以2、3或者5得到的。

这种思路的关键在于怎样确保数组里面的丑数是排好序的。我们假设数组中已经有若干个丑数,排好序后存在数组中。我们把现有的最大丑数记做M。现在我们来生成下一个丑数,该丑数肯定是前面某一个丑数乘以2、3或者5的结果。我们首先考虑把已有的每个丑数乘以2。在乘以2的时候,能得到若干个结果小于或等于M的。由于我们是按照顺序生成的,小于或者等于M肯定已经在数组中了,我们不需再次考虑;我们还会得到若干个大于M的结果,但我们只需要第一个大于M的结果,因为我们希望丑数是按从小到大顺序生成的,其他更大的结果我们以后再说。我们把得到的第一个乘以2后大于M的结果,记为M2。同样我们把已有的每一个丑数乘以3和5,能得到第一个大于M的结果M3和M5。那么下一个丑数应该是M2、M3和M5三个数的最小者。

前面我们分析的时候,提到把已有的每个丑数分别都乘以2、3和5,事实上是不需要的,因为已有的丑数是按顺序存在数组中的。对乘以2而言,肯定存在某一个丑数T2,排在它之前的每一个丑数乘以2得到的结果都会小于已有最大的丑数,在它之后的每一个丑数乘以2得到的结果都会太大。我们只需要记下这个丑数的位置,同时每次生成新的丑数的时候,去更新这个T2。对乘以3和5而言,存在着同样的T3和T5。

有了这些分析,我们不难写出如下的代码:

int GetUglyNumber_Solution2(int index)
{
    if(index <= 0)
        return 0;
    int *pUglyNumbers = new int[index];
    pUglyNumbers[0] = 1;
    int nextUglyIndex = 1;
    int *pMultiply2 = pUglyNumbers;
    int *pMultiply3 = pUglyNumbers;
    int *pMultiply5 = pUglyNumbers;
    while(nextUglyIndex < index)
    {
        int min = Min(*pMultiply2 * 2, *pMultiply3 * 3, *pMultiply5 * 5);
        pUglyNumbers[nextUglyIndex] = min;
        while(*pMultiply2 * 2 <= pUglyNumbers[nextUglyIndex])
            ++pMultiply2;
        while(*pMultiply3 * 3 <= pUglyNumbers[nextUglyIndex])
            ++pMultiply3;
        while(*pMultiply5 * 5 <= pUglyNumbers[nextUglyIndex])
            ++pMultiply5;
        ++nextUglyIndex;
    }
    int ugly = pUglyNumbers[nextUglyIndex - 1];
    delete[] pUglyNumbers;
    return ugly;
}
int Min(int number1, int number2, int number3)
{
    int min = (number1 < number2) ? number1 : number2;
    min = (min < number3) ? min : number3;
    return min;
}

和第一种思路相比,这种算法不需要在非丑数的整数上做任何计算,因此时间复杂度要低很多。感兴趣的读者可以分别统计两个函数GetUglyNumber_Solution1(1500)和GetUglyNumber_Solution2(1500)的运行时间。当然我们也要指出,第二种算法由于要保存已经生成的丑数,因此需要一个数组,从而需要额外的内存。第一种算法是没有这样的内存开销的。

本文地址:http://www.nowamagic.net/librarys/veda/detail/260,欢迎访问原出处。

不打个分吗?

转载随意,但请带上本文地址:

http://www.nowamagic.net/librarys/veda/detail/260

如果你认为这篇文章值得更多人阅读,欢迎使用下面的分享功能。
小提示:您可以按快捷键 Ctrl + D,或点此 加入收藏

阅读一百本计算机著作吧,少年

很多人觉得自己技术进步很慢,学习效率低,我觉得一个重要原因是看的书少了。多少是多呢?起码得看3、4、5、6米吧。给个具体的数量,那就100本书吧。很多人知识结构不好而且不系统,因为在特定领域有一个足够量的知识量+足够良好的知识结构,系统化以后就足以应对大量未曾遇到过的问题。

奉劝自学者:构建特定领域的知识结构体系的路径中再也没有比学习该专业的专业课程更好的了。如果我的知识结构体系足以囊括面试官的大部分甚至吞并他的知识结构体系的话,读到他言语中的一个词我们就已经知道他要表达什么,我们可以让他坐“上位”毕竟他是面试官,但是在知识结构体系以及心理上我们就居高临下。

所以,阅读一百本计算机著作吧,少年!

《编译原理(第2版)》 Alfred V. Aho (作者), Monica S.Lam (作者), 赵建华 (译者), 郑滔 (译者), 戴新宇 (译者)

《编译原理(第2版)》全面、深入地探讨了编译器设计方面的重要主题,包括词法分析、语法分析、语法制导定义和语法制导翻译、运行时刻环境、目标代码生成、代码优化技术、并行性检测以及过程间分析技术,并在相关章节中给出大量的实例。与上一版相比,《编译原理(第2版)》进行了全面的修订,涵盖了编译器开发方面的最新进展。每章中都提供了大量的系统及参考文献。《编译原理(第2版)》是编译原理课程方面的经典教材,内容丰富,适合作为高等院校计算机及相关专业本科生及研究生的编译原理课程的教材,也是广大技术人员的极佳参考读物。

更多计算机宝库...