以图明志

计算机算法

关于背包的硬币找零问题

解题思路:01背包,完全背包
设有6 种不同面值的硬币,各硬币的面值分别为5 分,1 角,2 角,5 角,1 元,2元。现要用这些面值的硬币来购物和找钱。购物时可以使用的各种面值的硬币个数存于数组Coins[1:6]中,商店里各面值的硬币有足够多。在1次购物中希望使用最少硬币个数。例如,1 次购物需要付款0.55 元,没有5 角的硬币,只好用2*20+10+5 共4 枚硬币来付款。

计算机算法

多少个0到1之间的随机数之和大于1?

一个简单的01背包问题
数学常数最令人着迷的就是,它们常常出现在一些看似与之毫不相干的场合中。 随便取一个 0 到 1 之间的数,再加上另一个 0 到 1 之间的随机数,然后再加上一个 0 到 1 之间的随机数⋯⋯直到和超过 1 为止。一个有趣的问题:平均需要加多少次,才能让和超过 1 呢?答案是 e 次,自然对数。

计算机算法

深入探讨各种背包算法问题

背包问题介绍与分析
背包问题是在1978年由Merkel和Hellman提出的。它的主要思路是假定某人拥有大量物品,重量各不同。此人通过秘密地选择一部分物品并将它们放 到背包中来加密消息。背包中的物品中重量是公开的,所有可能的物品也是公开的,但背包中的物品是保密的。附加一定的限制条件,给出重量,而要列出可能的物品,在计算上是不可实现的。
1 / 1 首页 < Prev 1 Next > 尾页 页码: